This presentation is provided for free by the author, who retains the copyright. The SGA distributes the Mineral Deposit Archive online (www.e-sga.org). The presentation has been peer reviewed to ensure scientific validity but has been subjected to minimal copy-editing.

RECOMMENDED CITATION:

Mueller AG (2020) Structural setting and age of syn- and postorogenic gold and Zn-Pb-Ag vein deposits, Variscan slate belt, Germany -- Slide presentation and explanatory notes. Society for Geology Applied to Mineral Deposits (SGA): www.e-sga.org/ Publications/Mineral Deposit Archive

Structural setting and age of syn- and postorogenic gold and Zn-Pb-Ag vein deposits, Variscan slate belt, Germany

Slide presentation and explanatory notes
Andreas G. Mueller
Version 1, November 2020
andreasm@iinet.net.au

Europe: Cratons and orogenic belts

Orogenic belts in central Europe

Modified from Schriel 1930

Rhenish slate belt: Syn- and post-orogenic veins

Modified from Walther and Zitzmann 1973; Drozdzewski 2011

Ruhr coal district: **Production** 9 billion metric tons. Open cut mining in the 14th century, underground mining since the 17th century AD, final closure in 2018.

The Eisenberg vein & Eder placer gold deposits

Modified from Beyschlag & Schriel 1923

1250 first written record in the Meissen chronicle 1480-1585 main period of underground mining, final closure in 1620 (30 year war). Production: UG 2.5 t Au, placers >1 t Au

Stratabound gold veins in the Eisenberg anticline

Outcrop map modified from Kulick et al. 1997

Eisenberg anticline: Mine workings in cross section

Sections modified from Kulick and Theuerjahr 1983

Section A-B: Gold in strike-parallel reverse faults Section C-D: Gold in bedding-parallel veins

Eisenberg anticline: Bedding-parallel veins St Georg and St Sebastian mines

Eisenberg St Georg: Bedding-parallel veins

Eisenberg St Georg: Oxidized Au-Cu-Pb-Se ore

Ore mineralogy: Ramdohr 1932, Maucher and Rehwald 1961

Native gold, clausthalite (PbSe), chalcopyrite, bornite, digenite, pyrite, sphalerite. Goethite, hematite, magnetite.

Saddle Reefs in folds: Type locality Bendigo

Modified from Baragwanath 1930; Willman 2007; Leader et al. 2013

Ramsbeck Zn-Pb-Ag veins: Setting in a regional anticline

Map modified from: Weber 1977; Werner 1988

Production
1840-1974:
16.7 Mt at
4.4 % Zn +
2.1 % Pb
(= 0.752 Mt
base metals)
Galena
concentrate
900 g/t Ag
(Bauer et al.
1979)

Ramsbeck Zn-Pb-Ag veins in foliated quartzite + slate

Surface map modified from Behrend & Paeckelmann 1937

Ramsbeck Zn-Pb-Ag veins in slaty cleavage and faults Modified from Behrend and Paeckelmann 1937

Venitian adit: Bronze Age ca. 1800 B.C., mining for silver? 1518: first written record, mining for silver + lead ± copper 1850: first zinc production, 1927: sulfide flotation plant

Ramsbeck Zn-Pb-Ag veins: Dörnberg section

Veins controlled by axial plane cleavage and flat reverse faults

Ramsbeck: Veins in the axial plane cleavage and in flat reverse faults

Doernberg mine: (A) Doernberg Vein, (B) Footwall Vein 1, (C) Aurora Vein

Ramsbeck: Vein-fault system in plan section

Modified from Podufal and Wellmer 1979

Ramsbeck: Vein-fault system in cross section

Modified from Bornhardt 1912; Behrend & Paeckelmann 1937

Ramsbeck: Zn-Pb grade, vein textures, alteration

Map modified from Podufal and Wellmer 1979

Ruhr coal district: Zn-Pb-Ag ore in normal faults

Modified from Pilger et al. 1961; Henningsen & Katzung 2002; Drozdzewski 2011

Ruhr district: Folded coal measures

Section modified from Buschendorf et al. 1957

Auguste Victoria: Faults in plan and section

Modified from Hesemann & Pilger 1951

Auguste Victoria Zn-Pb ore: Structural controls

Modified from Hesemann & Pilger 1951; Pilger et al. 1961

Auguste Victoria: Ore formation during faulting

Auguste Victoria: Stage 1 ore in normal fault

Section modified from Hesemann and Pilger 1951

Auguste Victoria: Stage 2 ore in strike-slip faults

Section modified from Hesemann and Pilger 1951

Age: North Zone > Huels A > B > C

Harz Block: Zn-Pb-Ag ore in wrench faults

Maps modified from Hinze et al. 1998

Upper Harz district:
Ore production 1524-1992
37.8 million metric tons
at 5.1% Pb + 3.9% Zn +
135 g/t Ag (Stedingk 2012)

Elbe Zone: Harz North Boundary Fault

Modified from Wagenbreth & Steiner 1990

Harz Block: Post-orogenic wrench faults

Modified from Jacobsen and Schneider 1950; Sperling and Stoppel 1981

Clausthal-Zellerfeld: Zn-Pb veins in dextral faults

Data from Sperling & Stoppel 1981; map modified from Stedingk 2012

Estimated > 1200 t Ag. Recovered grades:

Zellerfeld Fault (ZEF): 1.3 Mt at 8.9% Pb

Rosenhof Fault (RHF): 2.1 Mt at 4.3% Zn, 5.3% Pb

Burgstaetter Fault (BUF): 7.5 Mt at 4.4% Zn, 3.6% Pb

Clausthal-Zellerfeld: Burgstaetter dextral fault

Sections modified from Stedingk 2012

Stage 1: hematite + pyrite + chalcopyrite ± selenides

Stage 2: sphalerite + galena ± chalcopyrite ± Sb-Ag sulfosalts

Bad Grund: Zn-Pb veins in a sinistral extensional duplex

Modified from Sperling 1973, Sperling and Stoppel 1979, and Stedingk 2012

Production 1831-1992 19.1 million tons at 5.8% Pb + 3.9% Zn + 117 g/t Ag. (2240 t Ag)

Galena concentrate 1000 – 2000 g/t Ag

Bad Grund Westfeld: Stage 1 hematite + pyrite

Bad Grund Westfeld: Stage 2 Zn-Pb ore

ZnS > PbS > CuFeS2

Bad Grund East: Stage 3 Pb-Ag ore

St Andreasberg veins: Wrench fault reversal

Variscan veins: Key features

Structural setting: Syn-orogenic in bedding-parallel "saddle reefs" and in the axial plane cleavage of anticlines. Post-orogenic in normal and wrench faults crosscutting folds in the Variscan slate belt.

Absolute age: During main-stage folding and granite emplacement at ca. 305 Ma (Eisenberg, Ramsbeck). Post-folding in regional faults at or prior to 260-240 Ma (Auguste Victoria, Upper Harz).

Ore deposits: Gold-hematite-chalcopyrite-PbSe in carbonate veins. Sphalerite-galena ± chalcopyrite in quartz-carbonate ± barite veins enriched in silver (900-2000 g/t Ag in PbS concentrates).

Ore formation: Eisenberg, gold + Cu-Pb sulfide-selenide + hematite at >200°C in black slate. Zn-Pb-Ag: Ramsbeck at >300°C, Auguste-Victoria at 260°C, Upper Harz at 360-220°C including a pre-ore, oxidized Stage 1 with local Cu-Pb sulfide-selenide.

